000 02258nam a22003137a 4500
001 20241105140825.0
003 OCoLC
005 20241105141301.0
008 241105b |||||||| |||| 00| 0 eng d
020 _a 978-3-031-69665-7
020 _a 978-3-031-69666-4 (eBook)
022 _a1860-4862
022 _a1860-4870 (electronic)
040 _cddc
041 _aEnglish
100 _qSejal Shah
222 _aabnormal adenocarcinoma AI-driven AI-powered algorithms Artificial intelligence AUC Automated biopsies cal cancer cancer cells cancer detection cancer stages cells/class cervical cancer cervical cancer screening chemotherapy CIN CIN1 CIN3 Classification report classifier is given clinical CNNs colposcopy Confusion matrix cotesting cytology dataset deep learning models Detection and Diagnosis Diagnosis of Cervical diagnostic accuracy digital pathology disease Dyskeratotic early detection EHR Electronic Health Records enhance F1 Score false positives Fig genetic healthcare HPV infection HPV testing https://doi human papillomavirus identifying improving indicating integration Journal Koilocytotic Last access lesions logistic regression machine learning Macro average medical images Medicine Metaplastic model incorrectly predicted neural networks Oncology Pap smear image Parabasal pathologists patient outcomes performance potential precancer precancerous precision and recall Presence of HPV prognosis random forest risk factors ROC curve samples smear image classifier squamous cells superficial-intermediate surgery targeted technologies tissue treatment planning true class tumour types Weighted average
240 _aArtificial Intelligence for Early Detection and Diagnosis of Cervical Cancer.
245 _aArtificial Intelligence for Early Detection and Diagnosis of Cervical Cancer.
260 _aBioinformatics Department Marwadi University Rajkot, Gujarat, India |
_b Springer Nature Switzerland AG |
_c 2024
300 _a96 Pages
300 _aIncludes Index
490 _aSignals and Communication Technology.
600 _xOncology.
700 _qRohit M. Thanki
700 _qAnjali Diwan
856 _u https://doi.org/10.1007/978-3-031-69666-4
942 _2ddc
_cEB
_n0
999 _c29644
_d29644