Local cover image
Local cover image
Image from Google Jackets

Predominance of multi-drug resistant bacterial pathogens causing surgical site infections in Muhimbili National Hospital, Tanzania

By: Contributor(s): Material type: TextTextPublisher number: Phone: +255 28 298 3384 Fax: +255 28 298 3386 Email: vc@bugando.ac.tz Website: www.bugando.ac.tz Language: English Series: ; BMC research notes Volume 7 Issue 1 Publication details: Mwanza, Tanzania: BioMed Central & Catholic University of Health and Allied Sciences [CUHAS – Bugando] 07 August 2014Description: Pages 1-7ISSN:
  • 1756-0500
Online resources: Summary: Abstract Background: Surgical site infections (SSIs) remain a common and widespread problem contributing to a significant morbidity and mortality, attributed partly by the increase in antimicrobial resistance among the etiological agents. This study was done to determine the spectrum of bacterial isolates and their susceptibility patterns causing SSIs at Muhimbili National Hospital, Tanzania. Methods: This descriptive cross sectional study was conducted between September, 2011 and February, 2012. Pus swabs or pus were cultured on blood agar (Oxoid, UK) and MacConkey agar (Oxoid, UK) and incubated aerobically at 37°C for 18–24 hours. Bacterial identification was done using API 20E and VITEK and antimicrobial susceptibility was determined by Kirby Bauer disc diffusion. Results: Of the 100 patients, from whom wound swabs were collected, 90 (90%) had positive aerobic bacterial growth. A total of 147 pathogenic bacteria were isolated, including 114 (77.5%) gram negative and 33(22.5%) gram positive organisms. The most prevalent bacterial species were Pseudomonas aeruginosa (16.3%), followed by Staphylococcus aureus (12.2%) and Klebsiella pneumoniae (10.8%). Of the 18 S. aureus , 8 (44%) were methicillin resistant Staphylococcus aureus (MRSA) and three of them (17%) were carrying both MRSA and induced clindamycin resistance (ICR). Extended spectrum beta-lactamase (ESBL) producing Enterobacteriaceae were observed in 23 (79.3%) of the 29 isolates tested. Majority of Escherichia coli 12 (92.3%) and K. pneumoniae 11 (69%) isolates were ESBL producers. About 63% (93/147) were multiple-drug resistance (MDR) isolates, and the overall MDR among Gram positive and Gram negative bacteria was 60.6% (20/33) and 61.4%, (73/114), respectively. The prevalence of MDR for E. coli, A. baumannii and P. stuartii was 100% each. Majority (97%) of the Gram negative bacteria were resistant to more than four categories (classes) of antibiotics. Conclusion: A high proportion (63%) of the isolates causing SSIs in this tertiary hospital were MDR, of which (90%) were resistant to more than four classes of antibiotics. In the light of these findings, an urgent and significant change in antibiotic prescription policy is required at this National hospital.
Item type: RESEARCH ARTICLES
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status Barcode
RESEARCH ARTICLES MWALIMU NYERERE LEARNING RESOURCES CENTRE-CUHAS BUGANDO NFIC -1 RA0736
Total holds: 0

Abstract

Background: Surgical site infections (SSIs) remain a common and widespread problem contributing to a significant morbidity and mortality, attributed partly by the increase in antimicrobial resistance among the etiological agents. This study was done to determine the spectrum of bacterial isolates and their susceptibility patterns causing SSIs at Muhimbili National Hospital, Tanzania.

Methods: This descriptive cross sectional study was conducted between September, 2011 and February, 2012. Pus swabs or pus were cultured on blood agar (Oxoid, UK) and MacConkey agar (Oxoid, UK) and incubated aerobically at 37°C for 18–24 hours. Bacterial identification was done using API 20E and VITEK and antimicrobial susceptibility was determined by Kirby Bauer disc diffusion.

Results: Of the 100 patients, from whom wound swabs were collected, 90 (90%) had positive aerobic bacterial growth. A total of 147 pathogenic bacteria were isolated, including 114 (77.5%) gram negative and 33(22.5%) gram positive organisms. The most prevalent bacterial species were Pseudomonas aeruginosa (16.3%), followed by Staphylococcus aureus (12.2%) and Klebsiella pneumoniae (10.8%). Of the 18 S. aureus , 8 (44%) were methicillin resistant Staphylococcus aureus (MRSA) and three of them (17%) were carrying both MRSA and induced clindamycin resistance (ICR). Extended spectrum beta-lactamase (ESBL) producing Enterobacteriaceae were observed in 23 (79.3%) of the 29 isolates tested. Majority of Escherichia coli 12 (92.3%) and K. pneumoniae 11 (69%) isolates were ESBL producers. About 63% (93/147) were multiple-drug resistance (MDR) isolates, and the overall MDR among Gram positive and Gram negative bacteria was 60.6% (20/33) and 61.4%, (73/114), respectively. The prevalence of MDR for E. coli, A. baumannii and P. stuartii was 100% each. Majority (97%) of the Gram negative bacteria were resistant to more than four categories (classes) of antibiotics.

Conclusion: A high proportion (63%) of the isolates causing SSIs in this tertiary hospital were MDR, of which (90%) were resistant to more than four classes of antibiotics. In the light of these findings, an urgent and significant change in antibiotic prescription policy is required at this National hospital.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Catholic University of  Health and Allied Sciences - CUHAS
Directorate of ICT @ 2024